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NOTE 

Linearized Crank-Nicholson Scheme for 
Nonlinear Dirac Equations 

Since the pioneering work in [ 11, split-step spectral 
(SSS) methods have sometimes used for nonlinear wave 
computation. In a recent paper, De Frutos and Sanz-Serna 
[2] have applied these methods to nonlinear Dirac systems 
in (1 + 1)-dimensions. As a result of their numerical 
experiments, they conclude that SSS methods are clearly 
better than standard finite-difference schemes for these 
nonlinear systems. 

Because long evolution times are required in the study of 
solitary wave dynamics in nonlinear Dirac systems, speed 
and accuracy are essential properties for a practical code. 
These requirements rule out some standard schemes as, for 
example, the Crank-Nicholson (CN) one, although it is 
convergent and stable for nonlinear Dirac systems [3]. The 
drawback of this scheme is its slowness because of the 
required iterations by the solution of its nonlinear algebraic 
equations. 

In this note, we present a finite-difference method for 
nonlinear Dirac systems, already used some time ago [4], 
which is more accurate and orders of magnitude faster than 
the above-mentioned SSS methods. This finite-difference 
algorithm is a linearized Crank-Nicholson (LCN) scheme. 
The lack of iterations in this algorithm, without decreasing 
its accuracy, is the principal difference with the CN scheme. 
The LCN algorithm has been used in (1 + 3)-dimensions 
with spherical [S] and cylindrical [6] symmetry with 
satisfactory results. In the latter case the LCN scheme was 
completed with Strang’s splitting [7]. 

Before proceeding any further, it is convenient to say 
something about the nonlinearity of the Dirac systems. The 
numerical properties of the LCN scheme, and also of the 
CN one, for nonlinear Dirac systems are based on the 
existence of a discrete norm which is constant. This corre- 
sponds to charge conservation in the continuum model 
and it is independent of the nonlinear terms. Therefore the 
numerical properties of the LCN scheme for a nonlinearity 
are valid, with some changes, for other ones. In order to 
compare with the numerical experiments of [2] and for the 
sake of simplicity, we shall analyse the Dirac equation with 
a scalar self-coupling. For numerical results with other more 
complicated nonlinearities see [8]. 

We begin with the following Dirac system in 
(1 + 1 )-dimensions 

24, = du, (1) 

with the initial condition 

where 

4x, 0) =4(x), --co<x<co, 

u = U(X, t) is the spinor unknown, represented as a two- 
dimensional complex vector u = [ul , u21T, where T stands 
for transpose, i is the imaginary unit, and oi (i= 1, 2, 3) 
denote the Pauli matrices 

We suppose that Idi +O as 1x1 + GO and therefore 
lui(x, t)l + 0 as 1x1 -+ co. 

Let h and k be respectively the space and time discretiza- 
tion mesh sizes. We denote by ~7 the approximation to the 
unknown u at the space point xi = jh and at time t, = nk. 
The LCN scheme for the system (1) is given by 

(My+1 - u,“)/k = A; + 1’2( u,” + ’ + u,“)/2, (2) 

where A? + l/2 is the following linearization of the 
operator & 

4 + II2 = -o,D,+ i(Ju;j12- lu;j12- 1) 03 

+iWb,,12- Iu2A2); c7,/2. 

Here ult and u2t are, respectively, the first and second row 
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of the right-hand side of Eq. (1) and Do is the central spatial 
difference operator 

Do u; = (u,“+ , - UT- l )/2/z. 

Substituting this difference operator into the spatial 
derivatives of the last term of AT+“‘, we obtain 

A ;+l’L -o,D,-ifi”o, 

with 

fy = - 1 + lu;J2 - lu’$12 + k Re(u+a2D,u);, 

where Re(z) denotes the real part of z and u+ stands for the 
complex-conjugate transpose of u. After rearrangement, the 
LCN scheme reads in the following tridiagonal form 

-ka,vj_,/4h+a,“v,+ko,vj+l/4h=u~, (3) 

with 

and 

a: = 
l+ikfy/2 0 

0 > l-ikf;/2 ’ 

For the purpose of comparison, we shall consider the 
theoretical solution 

$(x, t) = [M(x), iN(x e lnt, 

M(x) = 2”2( 1 - A2)1’2 (1 + ,)I’* 

cosh((1 -A2)“* x) 
’ 1 + /1 cosh(2( 1 - /t’)l’* x) 

N(x)=2”2(1 -/l2)1’2 (1 -fl)“2 

sinh(( 1 - ,4*)l’* x) 
’ 1 + n cosh(2(1 - A2)l’* x) 

with frequency /1 = 0.75. As $i(-x, t) = $i(x, t), 
$*(-x, t) = -$*(x, t), and the LCN scheme preserves this 
symmetry, we implemented this scheme in the x half-line 
x 3 0. Besides, as the solution is exponentially small away 
from x = 0, we have introduced a cutoff at x = 8 in the initial 
condition. The LCN method was implemented in 0 d x d 16 
and 0 d r d 8, the same subset of the spacetime as in [Z]. 

Since the numerical initial condition was zero for x > 8, 
we have found it expedient to introduce a right moving 
boundary in order to solve the tridiagonal system (3) by the 

TABLE I 

LZ-Errors for the LCN Scheme 

0.5 0.7459E -02 0,7778E-03 0.4852E -04 
(129) (133) (160) 

0.25 0.7286E -02 0.7541E-03 0.66878 -04 
(145) (161) (184) 

0.125 0.725lE-02 0.7460E -03 0.7152E-04 

(170) (193) (264) 
0.0625 0.7233E-02 0.7356E -03 0.7069E -04 

(205) (298) (439) 

Note. The numbers in brackets represent CPU times in hun- 
dredths of a second. 

Thomas method [9]. This moving boundary works in the 
following way: 

(i) Let us suppose that we want to know the solu- 
tion of (3) at the first time step, that is at t = k. We introduce 
~(8 + 2h, k) = 0 as input in the Thomas algorithm and we 
calculate the auxiliary matrix coefficients of the algorithm. 

(ii) The value of u(0, k) is obtained from (i) and from 
the above-mentioned symmetry properties of the solution. 
Now, u(x, k) is calculated in 0 <x Q 8 + h by the Thomas 
method. 

(iii) For later times, the points (i) and (ii) are recur- 
sively applied by increasing the range of x one step at a time. 
When the right moving boundary overtakes the value 
x = 16, we have put u( 16, t) = 0. 

(iv) The calculation accuracy was monitored against 
the conservation of the discrete L*-norm 

llu7I = h i (lUljl’+ luy,l*) 1 
112 

J=o 

with J = 16/h. 

TABLE II 

L*-Errors for the SSS Scheme with Simple Splitting 

0.5 0.25 0.125 
(J=64) (J= 128) (J= 256) 

0.5 0.22428 + 00 0.2242E + 00 0.2242E + 00 

(128) (283) (616) 
0.25 O.l120E+OO O.l120E+OO O.l120E+OO 

(254) (561) (1209) 
0.125 0.5614E-01 0.5615E-01 0.5614E-01 

(501) (1111) (2424) 
0.0625 0.2813E-01 0.2814E-01 0.2814E-01 

(993) (2192) (4796) 

Note. The numbers in brackets represent CPU times in hundredths of 
a second. 
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TABLE III 

L*-Errors for the SSS Scheme with Strang’s Splitting 

0.5 0.25 0.125 
(J=64) (J= 128) (J= 256) 

0.5 0.2917E-01 0.2917E-01 0.2917E-01 

(138) (295) (633) 
0.25 0.7066E - 02 0.7067E-01 0.7068E - 02 

(364) (576) (1214) 
0.125 O.l767E-02 O.l770E-02 O.l772E-02 

(510) (1127) (2410) 
0.0625 0.4816E-03 0.4874E-03 0.4927E -03 

(1108) (2212) (4761) 

Note. The numbers in brackets represent CPU times in hundredths of 
a second. 

The LCN scheme was implemented in single precision 
complex arithmetic on the same type of machine of Ref. [2], 
that is a VAX 11/780 computer, with VMS as operating 
system and with a VAX-l 1 FORTRAN compiler. 

The results of the runs are summarized in Table I. The 
numbers in brackets represent CPU times in hundredths of 
a second and the entries without brackets give the L2-errors. 
In order to facilitate the comparison of the methods, we 
report in Tables II and III the results shown in [2] for SSS 
schemes, From these results, we deduce that the LCN is 
clearly more accurate and faster than the SSS method with 
simple or Strang’s splitting. Likewise, we note the different 
behaviour of the L2-errors as a function of h and k: for the 
LCN scheme, the error is nearly independent of the time 
mesh size and varies with the mesh size in space, whereas for 
the SSS methods it is the opposite. This is qualitatively the 
same error behaviour as for the CN scheme (see Table II in 
[2]). For other solutions of Eq. (l), less smooth than (4), 

and for long evolution times the LCN scheme shows the 
same good performance [4]. We conclude that for non- 
linear Dirac models the LCN is reliable, with easy coding, 
and more efficient than the split-step schemes used for com- 
parison. 
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